Питание Дети Услуги

Термоядерное топливо. Россия модернизирует ядерное топливо. От твэла – к ТВС

В силу того, что ядерное топливо эффективнее всех остальных видов топлива, которым мы располагаем сегодня, огромное предпочтение отдается всему тому, что способно работать с помощью атомных установок (АЭС, подводные лодки, корабли и прочее). О том, как производят ядерное топливо для реакторов, мы поговорим далее.

Добывают уран двумя основными способами:
1) Прямая добыча в карьерах или шахтах, если позволяет глубина залегания урана. С этим методом, надеюсь, всё понятно.
2) Подземное выщелачивание. Это когда на том месте, где найден уран, бурятся скважины, в них закачивается слабый раствор серной кислоты, а уже раствор взаимодействует с ураном, соединяясь с ним. Затем получившаяся смесь откачивается наверх, на поверхность, и из неё химическими методами выделяется уран.

Представим, будто мы уже добыли на руднике уран и подготовили его для дальнейших преобразований. На фото ниже - так называемый "желтый кек", U3O8. В бочке для дальнейшей перевозки.

Всё бы хорошо, и этот уран в теории можно было бы сразу использовать для производства топлива для АЭС, но увы. Природа, как всегда, подкинула нам работы. Дело в том что природный уран состоит из смеси трех изотопов. Это U238 (99.2745%), U235 (0.72%) и U234(0.0055%). Нас интересует здесь лишь U235 - так как он отлично делится тепловыми нейтронами в реакторе, именно он позволяет нам пользоваться всеми благами цепной реакции деления. К сожалению, его природной концентрации не хватит для стабильной и долгой работы современного реактора АЭС. Хотя, насколько я знаю, аппарат РБМК спроектирован так, что запуститься на топливе из природного урана сможет, но вот стабильность, долговременность и безопасность работы на таком топливе совершенно не гарантируется.
Уран нам надо обогатить. То есть повысить концентрацию U235 от природной до той, которая используется в реакторе.
Для примера, реактор РБМК работает на уране обогащения 2.8%, ВВЭР-1000 - обогащение от 1.6 до 5.0%. Судовые и корабельные ядерные энергетические установки кушают топливо с обогащением до 20%. А некоторые исследовательские реакторы работают на топливе аж с 90% обогащением (пример - ИРТ-Т в Томске).
В России обогащение урана проводится на газовых центрифугах. Т. е. тот желтый порошок, что был на фото ранее, превращают в газ, гексафторид урана UF6. Затем этот газ поступает на целый каскад центрифуг. На выходе из каждой центрифуги, из-за разности веса ядер U235 и U238, мы получаем гексафторид урана с чуть повышенным содержанием U235. Процесс повторяется многократно и в итоге мы получаем гексафторид урана с нужным нам обогащением. На фото ниже как раз можно увидеть масштаб каскада центрифуг - их очень много и простираются они в далекие дали.

Затем газ UF6 превращают обратно в UO2, в виде порошка. Химия, всё-таки, очень полезная наука и позволяет нам творить такие чудеса.
Однако этот порошок в реактор так просто не засыпать. Вернее, засыпать-то можно, но ничего хорошего из этого не выйдет. Его (порошок) надо привести к такому виду, чтобы мы могли надолго, на годы, опустить его в реактор. При этом само горючее не должно контактировать с теплоносителем и выходить за пределы активной зоны. И еще ко всему этому топливо должно выдерживать очень и очень суровые давления и температуры, которые возникнут в нём при работе внутри реактора.
Забыл, кстати, сказать что порошок тоже не абы какой - он должен быть определенных размеров, чтобы при спрессовывании и спекании не образовывалось ненужных пустот и трещин. Сначала из порошка делают таблетки, путем спрессовывания и долгого выпекания (технология действительно непростая, если её нарушить - топливные таблетки не будут годны к использованию). Вариации таблеток покажу на фото ниже.

Отверстия и выемки на таблетках нужны для компенсации теплового расширения и радиационных формоизменений. В реакторе со временем таблетки пухнут, выгибаются, изменяют размеры, и если ничего не предусмотреть - могут разрушиться, а это плохо.

Готовые таблетки затем упаковывают в металлические трубки (из стали, циркония и его сплавов и других металлов). Трубки закрывают с обоих концов и герметизируют. Готовая трубка с топливом называется твэл - тепловыделяющий элемент.

Для разных реакторов требуются твэлы разной конструкции и обогащения. Твэл РБМК, например, длиной 3.5 метра. Твэлы, кстати, бывают не только стержневые. как на фото. Они бывают пластинчатые, кольцевые, море различных видов и модификаций.
Твэлы затем объединяют в тепловыделяющие сборки - ТВС. ТВС реактора РБМК состоит из 18 твэлов и выглядит примерно вот так:

ТВС реактора ВВЭР выглядит вот так:
Как видно, ТВС реактора ВВЭР состоит из гораздо большего количества твэлов, чем у РБМК.
Готовое специзделие (ТВС) затем с соблюдением мер предосторожности доставляется на АЭС. Зачем предосторожности? Ядерное горючее, хоть пока и нерадиоактивно, очень ценное, дорогое, и при очень неаккуратном обращении способно вызвать много проблем. Затем проводится финальный контроль состояния ТВС и - загрузка в реактор. Всё, уран прошел долгий путь от руды под землей к высокотехнологичному устройству внутри ядерного реактора. Теперь у него другая судьба - несколько лет тужиться внутри реактора и выделять драгоценное тепло, которое у него будет забирать вода (или любой другой теплоноситель).

Ядерное топливо - материал, используемый в ядерных реакторах для проведения управляемой цепной реакции. Оно чрезвычайно энергоемко и небезопасно для человека, что накладывает ряд ограничений на его использование. Сегодня мы с вами узнаем, что собой представляет топливо ядерного реактора, как оно классифицируется и производится, где применяется.

Ход цепной реакции

Во время цепной ядерной реакции, ядро делится на две части, которые называют осколками деления. Одновременно с этим выделяется несколько (2-3) нейтронов, которые впоследствии вызывают деление следующих ядер. Процесс происходит при попадании нейтрона в ядро исходного вещества. Осколки деления имеют большую кинетическую энергию. Их торможение в веществе сопровождается выделением огромного количества тепла.

Осколки деления, вместе с продуктами их распада, называют продуктами деления. Ядра, которые делятся нейтронами любой энергии, называют ядерным горючим. Как правило, они представляют собой вещества с нечетным количеством атомов. Некоторые ядра делятся сугубо нейтронами, энергия которых выше определенного порогового значения. Это преимущественно элементы с четным числом атомов. Такие ядра называют сырьевым материалом, так как в момент захвата нейтрона пороговым ядром образуются ядра горючего. Комбинация горючего и сырьевого материала называется тем самым ядерным топливом.

Классификация

Ядерное топливо делится на два класса:

  1. Природное урановое. Оно содержит делящиеся ядра урана-235 и сырье урана-238, которое способно образовывать плутоний-239 при захвате нейтрона.
  2. Вторичное топливо, не встречающееся в природе. К нему, кроме всего прочего, относится плутоний-239, который получается из топлива первого вида, а также уран-233, образующийся при захвате нейтронов ядрами тория-232.

С точки зрения химического состава, бывают такие виды ядерного топлива:

  1. Металлическое (в том числе сплавы);
  2. Оксидное (к примеру, UO 2);
  3. Карбидное (к примеру PuC 1-x);
  4. Смешанное;
  5. Нитридное.

ТВЭЛ и ТВС

Топливо для ядерных реакторов используется в виде таблеток небольшого размера. Они помещаются в герметично-закрытые тепловыделяющие элементы (ТВЭЛы), которые, в свою очередь, по несколько сотен объединяются в тепловыделяющие сборки (ТВС). К ядерному топливу предъявляются высокие требования по совместимости с оболочками ТВЭЛов. Оно должно иметь достаточную температуру плавления и испарения, хорошую теплопроводность и не сильно увеличиваться в объеме при нейтронном облучении. Также во внимание берется технологичность производства.

Применение

На атомные электростанции и другие ядерные установки топливо приходит в виде ТВС. Они могут загружаться в реактор как во время его работы (на место выгоревших ТВС), так и во время ремонтной кампании. В последнем случае тепловыделяющие сборки меняют крупными группами. При этом лишь третья часть топлива заменяется полностью. Наиболее выгоревшие сборки выгружаются из центральной части реактора, а на их место ставятся частично выгоревшие сборки, которые ранее находились в менее активных областях. Следовательно, на место последних устанавливаются новые ТВС. Эта нехитрая схема перестановки считается традиционной и имеет ряд преимуществ, главным из которых является обеспечение равномерного энерговыделения. Конечно же, это условная схема, которая дает лишь общие представления о процессе.

Выдержка

После изъятия отработанного ядерного топлива из активной зоны реактора, его отправляют в бассейн выдержки, который, как правило, находится неподалеку. Дело в том, что в отработанных ТВС содержится огромное количество осколков деления урана. После выгрузки из реактора каждый ТВЭЛ содержит порядка 300 тысяч Кюри радиоактивных веществ, выделяющих 100 кВт/час энергии. За счет нее топливо саморазогревается и становится высокорадиоактивным.

Температура недавно выгруженного топлива может достигать 300°С. Поэтому его выдерживают на протяжении 3-4 лет под слоем воды, температура которой поддерживается в установленном диапазоне. По мере хранения под водой, радиоактивность топлива и мощность его остаточных выделений падает. Примерно через три года саморазогрев ТВС доходит уже до 50-60°С. Тогда топливо извлекают из бассейнов и отправляют на переработку или захоронение.

Металлический уран

Металлический уран используется в качестве топлива для ядерных реакторов относительно редко. Когда вещество достигает температуры 660°С, происходит фазовый переход, сопровождающийся изменением его структуры. Попросту говоря, уран увеличивается в объеме, что может привести к разрушению ТВЭЛа. В случае длительного облучения при температуре 200-500°С вещество подвергается радиационному росту. Суть этого явления заключается в удлинении облученного уранового стержня в 2-3 раза.

Применение металлического урана при температуре более 500°С затрудняется из-за его распухания. После деления ядра образуется два осколка, суммарный объем которых превышает объем того самого ядра. Часть осколков деления представлена атомами газов (ксенон, криптон и др.). Газ накапливается в порах урана и формирует внутреннее давление, которое растет по мере увеличения температуры. За счет увеличения объема атомов и повышения давления газов ядерное топливо начинает распухать. Таким образом, под этим подразумевается относительное изменение объема, связанное с делением ядер.

Сила распухания зависит от температуры ТВЭЛов и выгорания. С увеличением выгорания, возрастает количество осколков деления, а с увеличение температуры и выгорания - внутреннее давление газов. Если топливо обладает более высокими механическими качествами, то оно менее подвержено распуханию. Металлический уран к таким материалам не относится. Поэтому его применение в качестве топлива для ядерных реакторов ограничивает глубину выгорания, являющуюся одной из главных характеристик такого топлива.

Механические свойства урана и его радиационная стойкость улучшаются путем легирования материала. Это процесс предполагает добавление к нему алюминия, молибдена и других металлов. Благодаря легирующим добавкам, число нейтронов деления, необходимое на один захват, снижается. Поэтому для этих целей используются материалы, которые слабо поглощают нейтроны.

Тугоплавкие соединения

Хорошим ядерным топливом считаются некоторые тугоплавкие соединения урана: карбиды, окислы и интерметаллические соединения. Наиболее распространенным из них является диоксид урана (керамика). Его температура плавления составляет 2800°С, а плотность - 10,2 г/см 3 .

Так как у этого материала нет фазовых переходов, он менее подвержен распуханию, нежели сплавы урана. Благодаря этой особенности температуру выгорания можно повысить на несколько процентов. На высоких температурах керамика не взаимодействует с ниобием, цирконием, нержавеющей сталью и прочими материалами. Ее главный недостаток заключается в низкой теплопроводности - 4,5 кДж (м*К), ограничивающей удельную мощность реактора. Кроме того, горячая керамика склонна к растрескиванию.

Плутоний

Плутоний считается низкоплавким металлом. Он плавится при температуре 640°С. Из-за плохих пластических свойств он практически не поддается механической обработке. Токсичность вещества усложняет технологию изготовления ТВЭЛов. В атомной промышленности неоднократно предпринимались попытки использования плутония и его соединений, однако они не увенчались успехом. Использовать топливо для атомных электростанций, содержащее плутоний, нецелесообразно из-за примерно 2-кратного уменьшения периода разгона, на что не рассчитаны стандартные системы управления реакторами.

Для изготовления ядерного топлива, как правило, используют диоксид плутония, сплавы плутония с минералами, а также смесь карбидов плутония с карбидами урана. Высокими механическими свойствами и теплопроводностью обладают дисперсионные топлива, в которые частицы соединений урана и плутония размещаются в металлической матрице из молибдена, алюминия, нержавеющей стали и прочих металлов. От материала матрицы зависит радиационная стойкость и теплопроводность дисперсионного топлива. К примеру, на первой АЭС дисперсионное топливо состояло из частиц уранового сплава с 9% молибдена, которые были залиты молибденом.

Что касается ториевого топлива, то оно на сегодня не используется в силу трудностей производства и переработки ТВЭЛов.

Добыча

Значительные объемы основного сырья для ядерного топлива - урана сконцентрированы в нескольких странах: Россия, США, Франция, Канада и ЮАР. Его залежи, как правило, находятся около золота и меди, поэтому все эти материалы добывают одновременно.

Здоровье людей, работающих на разработках, подвержено большой опасности. Дело в том, что уран является токсичным материалом, и газы, выделяющиеся в процессе его добычи, могут вызывать рак. И это притом, что в руде содержится не более 1% этого вещества.

Получение

Производство ядерного топлива из урановой руды включает в себя такие стадии, как:

  1. Гидрометаллургическая переработка. Включает в себя выщелачивание, дробление и экстракционное или сорбционное извлечение. Результатом гидрометаллургической переработки является очищенная взвесь закиси оксиурана, диураната натрия или диураната аммония.
  2. Перевод вещества из оксида в тетрафторид или гексафторид, используемый для обогащения урана-235.
  3. Обогащение вещества путем центрифугирования или газовой термодиффузии.
  4. Перевод обогащенного материала в диоксид, из которого производят «таблетки» ТВЭЛов.

Регенерация

Во время работы ядерного реактора топливо не может полностью выгорать, поэтому воспроизводятся свободные изотопы. В этой связи отработанные ТВЭЛЫ подлежат регенерации с целью повторного использования.

На сегодня эту задачу решают путем пьюрекс-процесса, состоящего из таких этапов, как:

  1. Разрезание ТВЭЛов на две части и растворение их в азотной кислоте;
  2. Очистка раствора от продуктов деления и частей оболочки;
  3. Выделение чистых соединений урана и плутония.

После этого полученный диоксид плутония идет на производство новых сердечников, а уран - на обогащение или также изготовление сердечников. Переработка ядерного топлива является сложным и дорогостоящим процессом. Ее стоимость оказывает существенное влияние на экономическую целесообразность использования атомных электростанций. То же самое можно сказать и про захоронение отходов ядерного топлива, не пригодных к регенерации.

Принцип работы и устройство ТЯРД

В настоящее время предложены 2 варианта конструкции ТЯРД:

ТЯРД на основе термоядерного реактора с магнитным удержанием плазмы

В первом случае принцип действия и устройство ТЯРД выглядят следующим образом: основной частью двигателя является реактор, в котором происходит управляемая реакция термоядерного синтеза. Реактор представляет собой полую «камеру» цилиндрической формы, открытую с одной стороны, т. н. установку термоядерного синтеза схемы «открытая ловушка» (также именуемую «магнитная бутылка» или пробкотрон). «Камера» реактора вовсе не обязательно (и даже нежелательно) должна быть цельно-герметичной, скорее всего она будет представлять собой легкую размеростабильную ферму, несущую катушки магнитной системы. В настоящее время наиболее перспективной считается схема т. н. «амбиполярного удержания» или «магнитных зеркал» (англ. tandem mirrors ), хотя возможны и другие схемы удержания: газодинамические ловушки, центробежное удержание, обращенное магнитное поле (FRC). По современным оценкам, длина реакционной «камеры» составит от 100 до 300 м при диаметре 1-3 м. В камере реактора создаются условия, достаточные для начала термоядерного слияния компонентов выбранной топливной пары (температуры порядка сотен миллионов градусов, факторы критерия Лоусона). Термоядерное топливо - предварительно нагретая плазма из смеси топливных компонентов - подаётся в камеру реактора, где и происходит постоянная реакция синтеза. Генераторы магнитных полей (магнитные катушки той или иной конструкции), окружающие активную зону, создают в камере реактора поля большой напряжённости и сложной конфигурации, которые удерживают высокотемпературную термоядерную плазму от соприкосновения с конструкцией реактора и стабилизируют происходящие в ней процессы. Зона термоядерного «горения» (плазменный факел) формируется по продольной оси реактора. Полученная плазма, направляемая магнитными управляющими системами, истекает из реактора через сопло, создавая реактивную тягу.

Следует отметить возможность «многорежимной» работы ТЯРД. Путем впрыска в струю плазменного факела относительно холодного вещества можно резко повысить общую тягу двигателя (за счет снижения удельного импульса), что позволит кораблю с ТЯРД эффективно маневрировать в гравитационных полях массивных небесных тел, например больших планет, где зачастую требуется большая общая тяга двигателя. По общим оценкам, ТЯРД такой схемы может развивать тягу от нескольких килограммов вплоть до десятков тонн при удельном импульсе от 10 000сек до 4 млн.сек. Для сравнения, показатель удельного импульса наиболее совершенных химических ракетных двигателей - порядка 450 сек.

ТЯРД на основе систем инерционного синтеза (импульсный термоядерный реактор)

Двигатель второго типа - инерциальный импульсный термоядерный двигатель. В таком реакторе управляемая термоядерная реакция проходит в импульсном режиме (доли мкс с частотой 1-10Гц), при периодическом обжатии и разогреве микромишеней, содержащих термоядерное топливо. Первоначально предполагалось использовать лазерно-термоядерный двигатель (ЛТЯРД). Такой ЛТЯРД предлагался, в частности, для межзвёздного автоматического зонда в проекте «Дедал» . Главной его частью является реактор, работающий в импульсном режиме. В сферическую камеру реактора подаётся термоядерное топливо (например, дейтерий и тритий) в виде мишеней - сложной конструкции сфер из смеси замороженных топливных компонентов в оболочке диаметром несколько миллиметров. На внешней части камеры находятся мощные - порядка сотен тераватт - лазеры , наносекундный импульс излучения которых через оптически прозрачные окна в стенах камеры попадает на мишень. При этом на поверхности мишени мгновенно создается температура более 100 млн градусов при давлении порядка миллиона атмосфер - условия, достаточные для начала термоядерной реакции. Происходит термоядерный микровзрыв мощностью в несколько сотен килограммов в тротиловом эквиваленте. Частота таких взрывов в камере в проекте «Дедал» - порядка 250 в секунду, что требовало подачи топливных мишеней со скоростью более 10 км/с при помощи ЭМ-пушки. Расширяющаяся плазма вытекает из открытой части камеры реактора через сопло соответствующей конструкции, создавая реактивную тягу. В настоящее время уже теоретически и практически доказано, что лазерный метод обжатия/разогрева микромишеней является тупиковым - в том числе практически невозможно построить лазеры такой мощности с достаточным ресурсом. Поэтому в настоящее время для инерциального синтеза рассматривается вариант с ионно-пучковым обжатием/нагревом микромишеней, как более эффективный, компактный и с гораздо большим ресурсом.

И тем не менее, есть мнение, что ТЯРД на инерциально-импульсном принципе слишком громоздок из-за очень больших циркулирующих в нём мощностей, при худшем, чем у ТЯРД с магнитным удержанием, удельном импульсе и тяге, что вызвано импульсно-периодическим типом его действия. Идеологически к ТЯРД на инерциально-импульсном принципе примыкают взрыволеты на термоядерных зарядах типа проекта «Орион» .

Типы реакций и термоядерное топливо

ТЯРД может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива. В частности, на настоящее время принципиально осуществимы следующие типы реакций:

Реакция дейтерий + тритий (Топливо D-T)

2 H + 3 H = 4 He + n при энергетическом выходе 17,6 МэВ

Такая реакция наиболее легко осуществима с точки зрения современных технологий, даёт значительный выход энергии, топливные компоненты относительно дёшевы. Недостаток её - весьма большой выход нежелательной (и бесполезной для прямого создания тяги) нейтронной радиации, уносящей большую часть мощности реакции и резко снижающей КПД двигателя. Тритий радиоактивен, период его полураспада - около 12 лет, то есть его долговременное хранение невозможно. В то же время, возможно окружить дейтериево-тритиевый реактор оболочкой, содержащий литий: последний, облучаясь нейтронным потоком, превращается в тритий, что в известной степени замыкает топливный цикл, поскольку реактор работает в режиме размножителя (бридера). Таким образом, топливом для D-T- реактора фактически служат дейтерий и литий.

Реакция дейтерий + гелий-3

2 H + 3 He = 4 He + p. при энергетическом выходе 18,3 МэВ

Условия её достижения значительно сложнее. Гелий-3, кроме того, является редким и чрезвычайно дорогим изотопом. В промышленных масштабах на настоящее время не производится. Хотя энергетический выход реакции D-T выше, реакция D- 3 He имеет следующие преимущества:

Сниженный нейтронный поток, реакцию можно отнести к «безнейтронным»,

Меньшая масса радиационной защиты,

Меньшая масса магнитных катушек реактора.

При реакции D- 3 He в форме нейтронов выделяется всего около 5 % мощности (против 80 % для реакции D-T).Около 20 % выделяется в форме рентгеновского излучения. Вся остальная энергия может быть непосредственно использована для создания реактивной тяги. Таким образом, реакция D-3He намного более перспективна для применения в реакторе ТЯРД.

Другие виды реакций

Реакция между ядрами дейтерия (D-D, монотопливо) D + D -> 3 He + n при энергетическом выходе 3,3 МэВ, и

D + D -> T + p+ при энергетическом выходе 4 МэВ. Нейтронный выход в этой реакции весьма значителен.

Возможны и некоторые другие типы реакций:

P + 6 Li → 4 He (1.7 MeV) + 3 He (2.3 MeV) 3 He + 6 Li → 2 4 He + p + 16.9 MeV p + 11 B → 3 4 He + 8.7 MeV

Нейтронный выход в указанных выше реакциях отсутствует.

Выбор топлива зависит от многих факторов - его доступность и дешевизна, энергетический выход, лёгкость достижения потребных для реакции термоядерного синтеза условий (в первую очередь, температуры), необходимых конструктивных характеристик реактора и проч. Наиболее перспективны для осуществления ТЯРД т. н. «безнейтронные» реакции, так как порождаемый термоядерным синтезом нейтронный поток (например, в реакции дейтерий-тритий) уносит значительную часть мощности и не может быть использован для создания тяги. Кроме того, нейтронная радиация порождает наведенную радиоактивность в конструкции реактора и корабля, создавая опасность для экипажа. Реакция дейтерий- гелий-3 является перспективной в том числе и по причине отсутствия нейтронного выхода. В настоящее время предложена ещё одна концепция ТЯРД - с использованием малых количеств антиматерии в качестве катализатора термоядерной реакции.

История, современное состояние и перспективы разработок ТЯРД

Идея создания ТЯРД появилась практически сразу после осуществления первых термоядерных реакций (испытаний термоядерных зарядов). Одной из первых публикаций по теме разработки ТЯРД явилась изданная в 1958 году статья Дж. Росса. В настоящее время ведутся теоретические разработки таких видов двигателей (в частности, на основе лазерного термоядерного синтеза) и в целом - широкие практические исследования в области управляемого термоядерного синтеза. Существуют твёрдые теоретические и инженерные предпосылки для осуществления такого типа двигателя в обозримом будущем. Исходя из расчетных характеристик ТЯРД, такие двигатели смогут обеспечить создание скоростного и эффективного межпланетного транспорта для освоения Солнечной системы. Однако реальные образцы ТЯРД на настоящий момент (2012) ещё не созданы.

См. также

Ссылки

  • Космонавтика XXI века: термоядерные двигатели // газета «За науку», 2003
  • New Scientist Space (23.01.2003): Nuclear fusion could power NASA spacecraft (англ.)
  • Физическая энциклопедия, т.4, статья «термоядерные реакции», на стр. 102, Москва, «Большая Российская энциклопедия», 1994 г, 704 c.
Паровая машина Двигатель Стирлинга Пневматический двигатель
По виду рабочего тела
Газовые Газотурбинная установка Газотурбинная электростанция Газотурбинные двигатели‎
Паровые Парогазовая установка Конденсационная турбина
Гидравлические турбины‎ Пропеллерная турбина Гидротрансформатор
По конструктивным особенностям Осевая (аксиальная) турбина Центробежная турбина (радиальная,

Жизненный цикл ядерного топлива на основе урана или плутония начинается на добывающих предприятиях, химических комбинатах, в газовых центрифугах, и не заканчивается в момент выгрузки тепловыделяющей сборки из реактора, поскольку каждой ТВС предстоит пройти долгий путь утилизации, а затем и переработки.

Добыча сырья для ядерного топлива

Уран - самый тяжёлый металл на земле. Около 99,4% земного урана приходится на уран-238, и всего 0,6% - на уран-235. В докладе Международного агентства по атомной энергии под названием «Красная книга» содержатся данные о росте объёмов добычи и спроса на уран, несмотря на аварию на АЭС «Фукусима-1», которая заставила многих задуматься о перспективах ядерной энергетики. Только за последние несколько лет разведанные запасы урана выросли на 7%, что связано с открытием новых месторождений. Самыми крупными производителями остаются Казахстан, Канада и Австралия, они добывают до 63% мирового урана. Кроме этого запасы металла имеются в Австралии, Бразилии, Китае, Малави, России, Нигере, США, Украине, КНР и других странах. Ранее Пронедра писали, что за 2016 год в РФ было добыто 7,9 тысячи тонн урана.

В наши дни уран добывают тремя разными способами. Не теряет своей актуальности открытый метод. Он используется в тех случаях, когда залежи находятся близко к поверхности земли. При открытом способе бульдозеры создают карьер, затем руда с примесями грузится в самосвалы для транспортировки на перерабатывающие комплексы.

Часто рудное тело залегает на большой глубине, в таком случае используется подземный способ добычи. Вырывается шахта глубиной до двух километров, породу, путём сверления, добывают в горизонтальных штреках, перевозят наверх в грузовых лифтах.

Смесь, которая таким образом вывозится наверх, имеет множество составляющих. Породу необходимо измельчить, разбавить водой и удалить лишнее. Далее в смесь добавляют серную кислоту для проведения процесса выщелачивания. В ходе этой реакции химики получают осадок солей урана жёлтого цвета. Наконец, уран с примесями очищается на аффинажном производстве. Только после этого получается закись-окись урана, которой и торгуют на бирже.

Есть гораздо более безопасный, экологически чистый и экономически выгодный способ, который называют скважинным подземным выщелачиванием (СПВ).

При этом методе разработки месторождений территория остаётся безопасной для персонала, а радиационный фон соответствует фону в крупных городах. Чтобы добыть уран с помощью выщелачивания, необходимо пробурить 6 скважин по углам шестиугольника. Через эти скважины в залежи урана закачивают серную кислоту, она смешивается с его солями. Этот раствор добывают, а именно выкачивают через скважину в центре шестиугольника. Чтобы добиться нужной концентрации солей урана, смесь по нескольку раз пропускают через сорбционные колонны.

Производство ядерного топлива

Производство ядерного топлива невозможно представить без газовых центрифуг, которые используются для получения обогащённого урана. После достижения необходимой концентрации из диоксида урана прессуют так называемые таблетки. Их создают при помощи смазочных материалов, которые удаляются во время обжига в печах. Температура обжига достигает 1000 градусов. После этого таблетки проверяются на соответствие заявленным требованиям. Имеют значение качество поверхности, содержание влаги, соотношение кислорода и урана.

В это же время в другом цехе готовят трубчатые оболочки для тепловыделяющих элементов. Вышеназванные процессы, включая последующие дозировку и упаковку таблеток в оболочечные трубки, герметизацию, дезактивацию, называются фабрикацией топлива. В России созданием тепловыделяющих сборок (ТВС) занимаются предприятия «Машиностроительный завод» в Московской области, «Новосибирский завод химконцентратов» в Новосибирске, «Московский завод полиметаллов» и другие.

Каждая партия топливных сборок создаётся под реактор конкретного типа. Европейские ТВС делаются в форме квадрата, а российские - с шестиугольным сечением. В РФ широко распространены реакторы типа ВВЭР-440 и ВВЭР-1000. Первые ТВЭЛы для ВВЭР-440 начали разрабатываться с 1963 года, а для ВВЭР-1000 - с 1978 года. Несмотря на то что в России активно внедряются новые реакторы с постфукусимскими технологиями безопасности, по стране и за её пределами функционирует много ядерных установок старого образца, поэтому одинаково актуальными остаются топливные сборки для разных типов реакторов.

Например, для обеспечения тепловыделяющими сборками одной активной зоны реактора РБМК-1000 необходимо свыше 200 тысяч комплектующих деталей из циркониевых сплавов, а также 14 млн спечённых таблеток из диоксида урана. Иногда стоимость изготовления топливной сборки может превосходить стоимость содержащегося в элементах топлива, поэтому так важно обеспечить высокую энергоотдачу с каждого килограмма урана.

Затраты на производственные процессы в %

Отдельно стоит сказать о топливных сборках для исследовательских реакторов. Они конструируются таким образом, чтобы сделать наблюдение и изучение процесса генерации нейтронов максимально комфортным. Такие ТВЭЛы для экспериментов в сферах ядерной физики, наработки изотопов, радиационной медицины в России производит «Новосибирский завод химических концентратов». ТВС создаются на основе бесшовных элементов с ураном и алюминием.

Производством ядерного топлива в РФ занимается топливная компания ТВЭЛ (подразделение «Росатома»). Предприятие работает над обогащением сырья, сборкой тепловыделяющих элементов, а также предоставляет услуги по лицензированию топлива. «Ковровский механический завод» во Владимирской области и «Уральский завод газовых центрифуг» в Свердловской области создают оборудование для российских ТВС.

Особенности транспортировки ТВЭЛов

Природный уран характеризуются низким уровнем радиоактивности, однако перед производством ТВС металл проходит процедуру обогащения. Содержание урана-235 в природной руде не превышает 0,7%, а радиоактивность составляет 25 беккерелей на 1 миллиграмм урана.

В урановых таблетках, которые помещаются в ТВС, находится уран с концентрацией урана-235 5%. Готовые ТВС с ядерным топливом перевозятся в специальных металлических контейнерах высокой прочности. Для транспортировки используется железнодорожный, автомобильный, морской и даже воздушный транспорт. В каждом контейнере размещают по две сборки. Перевозка не облучённого (свежего) топлива не представляет радиационной опасности, поскольку излучение не выходит за пределы циркониевых трубок, в которые помещаются прессованные таблетки из урана.

Для партии топлива разрабатывается специальный маршрут, груз перевозится в сопровождении охранного персонала производителя или заказчика (чаще), что связано прежде всего с дороговизной оборудования. За всю историю производства ядерного топлива не было зафиксировано ни одной транспортной аварии с участием ТВС, которая бы повлияла на радиационный фон окружающей среды или привела к жертвам.

Топливо в активной зоне реактора

Единица ядерного топлива - ТВЭЛ - способна выделять на протяжении долгого времени огромное количество энергии. С такими объёмами не сравнится ни уголь, ни газ. Жизненный цикл топлива на любой АЭС начинается с выгрузки, выемки и хранения на складе ТВС свежего топлива. Когда предыдущая партия топлива в реакторе выгорает, персонал комплектует ТВС для загрузки в активную зону (рабочую зону реактора, где происходит реакция распада). Как правило, топливо перезагружается частично.

Полностью топливо закладывается в активную зону только в момент первого запуска реактора. Это связано с тем, что ТВЭЛы в реакторе выгорают неравномерно, поскольку нейтронный поток различается по интенсивности в разных зонах реактора. Благодаря учётным приборам, персонал станции имеет возможность в режиме реального времени следить за степенью выгорания каждой единицы топлива и производить замену. Иногда вместо загрузки новых ТВС, сборки перемещаются между собой. В центре активной зоны выгорание происходит интенсивнее всего.

ТВС после атомной станции

Уран, который отработал в ядерном реакторе, называется облучённым или выгоревшим. А такие ТВС - отработавшим ядерным топливом. ОЯТ позиционируется отдельно от радиоактивных отходов, поскольку имеет как минимум 2 полезных компонента - это невыгоревший уран (глубина выгорания металла никогда не достигает 100%) и трансурановые радионуклиды.

В последнее время физики стали использовать в промышленности и медицине радиоактивные изотопы, накапливающиеся в ОЯТ. После того как топливо отработает свою кампанию (время нахождения сборки в активной зоне реактора в условиях работы на номинальной мощности), его отправляют в бассейн выдержки, затем в хранилище непосредственно в реакторном отделении, а после этого - на переработку или захоронение. Бассейн выдержки предназначен для отвода тепла и защиты от ионизирующего излучения, поскольку ТВС после извлечения из реактора остаётся опасной.

В США, Канаде или Швеции ОЯТ не отправляют на повторную переработку. Другие страны, среди них и Россия, работают над замкнутым топливным циклом. Он позволяет существенно сократить расходы на производство ядерного топлива, поскольку повторно используется часть ОЯТ.

Топливные стержни растворяются в кислоте, после чего исследователи выделяют из отходов плутоний и неиспользованный уран. Около 3% сырья эксплуатировать повторно невозможно, это высокоактивные отходы, которые проходят процедуры битумирования или остекловывания.

Из отработавшего ядерного топлива можно получить 1% плутония. Этот металл не требуется обогащать, Россия использует его в процессе производства инновационного MOX-топлива. Замкнутый топливный цикл позволяет сделать одну ТВС дешевле приблизительно на 3%, однако такая технология требует больших инвестиций на строительство промышленных узлов, поэтому пока не получила широкого распространения в мире. Тем не менее, топливная компания «Росатома» не прекращает исследования в этом направлении. Недавно Пронедра писали, что в Российской Федерации работают над топливом, способным в активной зоне реактора утилизировать изотопы америция, кюрия и нептуния, которые входят в те самые 3% высокорадиоактивных отходов.

Производители ядерного топлива: рейтинг

  1. Французская компания Areva до недавнего времени обеспечивала 31% мирового рынка тепловыделяющих сборок. Фирма занимается производством ядерного топлива и сборкой комплектующих для АЭС. В 2017 году Areva пережила качественное обновление, в компанию пришли новые инвесторы, а колоссальный убыток 2015 года удалось сократить в 3 раза.
  2. Westinghouse - американское подразделение японской компании Toshiba. Активно развивает рынок в восточной Европе, поставляет тепловыделяющие сборки на украинские АЭС. Вместе с Toshiba обеспечивает 26% мирового рынка производства ядерного топлива.
  3. Топливная компания ТВЭЛ госкорпорации «Росатом» (Россия) расположилась на третьем месте. ТВЭЛ обеспечивает 17% мирового рынка, имеет десятилетний портфель контрактов на 30 млрд долларов и поставляет топливо на более чем 70 реакторов. ТВЭЛ разрабатывает ТВС для реакторов ВВЭР, а также выходит на рынок ядерных установок западного дизайна.
  4. Japan Nuclear Fuel Limited , по последним данным, обеспечивает 16% мирового рынка, поставляет ТВС на большую часть ядерных реакторов в самой Японии.
  5. Mitsubishi Heavy Industries - японский гигант, который производит турбины, танкеры, кондиционеры, а с недавних пор и ядерное топливо для реакторов западного образца. Mitsubishi Heavy Industries (подразделение головной компании) занимается строительством ядерных реакторов APWR, исследовательской деятельностью вместе с Areva. Именно эта компания выбрана японским правительством для разработки новых реакторов.

Европейские и американские ученые совместно разработали новый тип термоядерного топлива, на порядок превосходящего все существующие аналоги по энергетической эффективности. Исследования проводились на базе ультрасовременных токамаков Alcator C-Mod и JET.

Исследователи из Массачусетского технологического института (MIT) совместно с коллегами из США и Брюсселя разработали новый тип термоядерного топлива. С его помощью можно получить в десять раз больше энергии, чем из всех существующих образцов. Новое топливо содержит три вида ионов - частиц, заряд которых изменяется в зависимости от потери или приобретения электрона. Для изучения топлива используется токамак - тороидальная камера для магнитного удержания плазмы, создающая условия для управляемого термоядерного синтеза. Эксперименты с новинкой проводятся на базе токамака Alcator C-Mod, принадлежащего MIT, который обеспечивает наивысшее напряжение магнитного поля и давление плазмы во время испытаний.

Секрет нового топлива

Alcator C-Mod последний раз был запущен еще в сентябре 2016 года, но данные, полученные в результате проведенных экспериментов, были расшифрованы лишь недавно. Именно благодаря им ученым и удалось разработать новый, уникальный тип термоядерного топлива, значительно увеличивающего энергию ионов в плазме. Результаты были настолько обнадеживающими, что исследователи, работающие на Объединенном европейском торе (JET, еще один современный токамак) в Оксфордшире, США, провели собственный эксперимент и достигли такого же увеличения выработки энергии. Исследование, в котором подробно изложены результаты работы, было недавно опубликовано в Nature Physics.

Ключом к повышению эффективности ядерного топлива было добавление незначительного количества гелия-3 - стабильного изотопа гелия, который вместо двух нейтронов обладает лишь одним. Ядерное топливо, используемое в Alcator C-Mod, ранее содержало только два типа ионов, ионы дейтерия и водорода. Дейтерий, стабильный изотоп водорода с одним нейтроном ядре (у обычного водорода нейтронов нет совсем), занимает порядка 95% от общего состава топлива.

Исследователи из Центра плазмы и синтеза MIT (PSFC) использовали радиочастотный нагрев для того, чтобы воспламенить топливо, удерживаемое в форме суспензии промышленными магнитами. Этот метод основан на использовании антенн вне токамака, которые воздействуют на топливо с помощью радиоволн определенных частот. Они калибруются так, чтобы поражать лишь материал, количество которого в суспензии меньше всех прочих (в данном случае это водород). Водород обладает лишь малой долей от общей плотности топлива, а потому фокусировка радиочастотного нагрева на его ионах позволяет достичь экстремально высоких температур. Возбужденные ионы водорода затем взаимодействуют с ионами дейтерия, и полученные в результате из взаимодействия частицы бомбардируют наружную оболочку реактора, выделяя огромное количество тепла и электроэнергии.

А что же гелий-3? В новом топливе его меньше 1%, но именно его ионы играют решающую роль. Сфокусировав радиочастотный нагрев на столь незначительном количестве вещества, исследователи подняли энергию эонов до уровня мегаэлектроноволь (МэВ). Электроновольт - это количество энергии, полученное\потерянное в результате перехода электрона от одной точки электрического потенциала на уровень в 1 вольт выше. До сих пор мегаэлектронвольты в экспериментах с термоядерным топливом были лишь пределом мечтаний ученых - это на порядок больше, чем энергия всех образцов, полученных до сих пор.

Токамак: исследование термоядерных реакций

Alcatre C-Mod и JET представляют собой экспериментальные камеры термоядерного синтеза с возможностью достижения тех же плазменных давлений и температур, которые потребуются в полномасштабном реакторе синтеза. Стоит отметить, впрочем, что они меньше по размерам и не дают того, что исследователи называют «активированным синтезом» - синтеза, энергия которого напрямую преобразуется в энергию, которую можно использовать для других нужд. Тонкая настройка состава топлива, частоты радиоволн, магнитных полей и других переменных в этих экспериментах позволяют исследователям тщательно выбрать наиболее эффективный процесс синтеза, который потом можно будет воспроизвести в промышленном масштабе.

Как уже было сказано, американским ученым, работающим на JET, удалось не просто достичь тех же результатов, но и сравнить их с работой западных коллег, в результате чего научное сообщество получило уникальные данные измерений различных свойств невероятно сложных реакций, происходящих в перегретой плазме. В MIT исследователи использовали метод получения изображений реакции с помощью фазово-контрастной микроскопии, благодаря которому фазы электромагнитных волн трансформируются в контраст интенсивности. В свою очередь, ученые JET обладали возможностью более точно измерять энергию полученных частиц, и в результате картина того, что происходит во время реакций синтеза, получилась наиболее

Ядерный синтез: революция в энергетике

Что это значит для нас с вами? Как минимум значительный прорыв в технологической сфере. Ядерный синтез, поставленный на нужды промышленности, может произвести революцию в производстве энергии. Его энергетический потенциал невероятно высок, а топливо состоит из самых распространенных элементов в Солнечной системе - водорода и гелия. К тому же, после сгорания термоядерного топлива не образуется опасных для экологии и человека отходов.

Как отмечает Nature, результаты этих экспериментов также помогут астрономам лучше понять роль гелия-3 в солнечной активности - ведь солнечные вспышки, несущие угрозу для земной энергетики и околоземных спутников, есть ни что иное, как результат протекания термоядерной реакции с колоссальным тепловым и электромагнитным излучением.